	AP Test Question		2006			No Calculator Allowed				
4)	t (seconds)	0	10	20	30	40	50	60	70	80
	$\mathrm{v}(\mathrm{t})(\mathrm{ft} / \mathrm{sec})$	5	14	22	29	35	40	44	47	49

Rocket A has positive velocity $v(t)$ after being launched upward from an initial height of 0 feet at time $t=0$ seconds. The velocity of the rocket is recorded for selected values of t over the interval $0 \leq t \leq 80$ seconds, as shown in the table above.
a) Find the average acceleration of rocket A over the time interval $0 \leq t \leq 80$ seconds. Indicate units of measure. $\frac{11}{20} \mathrm{ft} / \mathrm{sec}^{2}$

t (seconds)	0	10	20	30	40	50	60	70	80
$\mathrm{v}(\mathrm{t}) \quad(\mathrm{ft} / \mathrm{sec})$	5	14	22	29	35	40	44	47	49

b) Using correct units, explain the meaning of $\int_{10}^{70}(t) d t$ in terms of the rocket's flight. Use a midpoint Riemann sum with 3 subintervals of equal length to approximate $\int_{10}^{70} v(t) d t .2020 \mathrm{ft}$

$\mathrm{t} \quad$ (seconds)	0	10	20	30	40	50	60	70	80
$\mathrm{v}(\mathrm{t})$	$(\mathrm{ft} / \mathrm{sec})$	5	14	22	29	35	40	44	47

c) Rocket B is launched upward with an acceleration of $a(t)=\frac{3}{\sqrt{t+1}}$
feet per second per second. At time $t=0$ seconds, the inital height of the rocket is 0 ft , and the intial velocity is $2 \mathrm{ft} / \mathrm{sec}$. Which of the two rockets is travelling vaster at time $t=80$ seconds? Explain your answer.

$$
\begin{aligned}
& \text { Rocket } \mathrm{A} \\
& \mathbf{4 9} \mathrm{ft} / \mathrm{sec}
\end{aligned}<\begin{aligned}
& \text { Rocket B } \\
& \mathbf{5 0} \mathbf{f t} / \mathbf{s e c}
\end{aligned}
$$

